
Data
Structures

Search	Trees

balanced	trees

AVL	tree

red-black	tree

splay	trees

rotate	the	most	frequently	used	element	to	top

no	need	to	keep	perfectly	balanced

simple	to	implement

adapt	to	dynamic	data

B	tree	/	B+	tree

generalization	of	"binary"	search	trees

use	large	branching	factor	to	reduce	tree
height

B+tree	vs	B-tree

B+-tree	stores	all	data	in	leaf	nodes

interior	nodes	only	store	"key	dividers"

may	be	combined	with	"splay"	to
produce	B+/splay	tree

Hash	Tables

Why	not	just	use	arrays?
(constant	time	look	up)

A:	The	key	space	may	be	huge not	enough	(address)	space	for	all	keys

Observation:	keys	in	huge	spaces	may
appear	only	sparsely	in	practice This	is	when	hash	tables	work	well

Solution:	distribute	and	group	some	keys
together.	Put	them	into	the	same	slot

use	hash	function	to	"distribute"	the	key
space

takes	some	luck	to	get	a	good	distribution Murmur	hash

probablematic	cache	locality

hash	value	of	adjacent	elements	may	
be	far	apart

but	cache	stores	contents	of	memory	at	
nearby	locations

put	the	"hashed	key"	into	an	array

there	may	be	conflicts

how	to	deal	with	conflicts

many	of	the	ways	in	textbooks	don't	really
work	well

put	conflicting	elements	into	a	list

use	extendible	hash

Can	hash	tables	also	be	trees?

"hashed	key	space"	may	be	segmented
(constructing	a	tree-like	structure)

extendible	hash

when	too	many	things	gets	into	the	same
bucket,	split	the	bucket

goal:	split	the	key	space	of	a	tree	node	into	two

This	is	much	like	a	page	table

most	significant	"bits"	on	upper	level	nodes

refine	the	selection	on	lower	nodes	using	lower	bits

If	all	bits	are	used	at	the	same	time,	it	becomes	an	array

branching	factor	is	proportional	to	the
size	of	key	space

"constant	search	time"	is	only	achieved
when	the	table	size	is	not	much	smaller
than	key	space	size

can	probably	achieve	the	same	with	B+	trees

huge	branching	factor	leads	to	small	tree	height

Linked	Lists

two	kinds	of	linked	list
structures

C	lists	(usually	have	links	embedded	into
data	payload)

definition	in	C

struct	node	{
	int	x;
		struct	node	*next;
};

Pros

no	need	to	allocate	`cons'	nodes	when
adding	element	to	a	listlinks	are	alway	there

more	efficient	when	adding,	removing	element
to	lists

easier	to	manage	when	resource
management	facility	is	poor

Cons

The	pointer	will	always	take	space	even	the
datum	is	not	in	the	list

This	gets	worse	when	a	datum	can	be	in	multiple	lists

no	abstractionredo	all	the	link	following	code	in	each	loop

hurt	modularity,	reduce	reuse	of	code

final	word

trade	space	for	time

often	used	in	operating	systemssee	Linux	task_struct

Lisp	lists	(have	special	"cons
nodes"		that	link	to	each	other,	but
only	pointing	to	the	payload	data)

definition	in	Haskelldata	List	a	=	Nil	|	Cons	a	(List	a)

definition	in	Lisp	(Typed	Racket)
(struct	List	((datum	:	Any)

	(next		:	List)))

Pros

abstraction,	generic	programming

clean	and	reusable	code	for	list	operations

Consallocation	and	deallocation	of	`cons'	cells	may	take	time

final	word
use	them	when	we	can	afford	a	little	more
running	time

Purely	Functional	Data	Structures
(aka	persistent	data	structures)

rationaleIf	used	...

sequentially

behaves	like	prepaid	facilities

Proseasier	to	manage

no	need	to	revert	the	effects	at	backtracking

because	"old	version"	was	kept	intact

just	need	to	get	back	to	the	original	handle

Cons

won't	save	running	time

won't	waste	running	time

must	prepay

timefor	building	augmented	structure

space

peak	space	usage	can	be	much	larger	than	imperative	data	
structures	when	the	recursion	gets	deep

concurrently

seems	to	be	the	only	correct	way

because	concurrent	processes	must	access	different	
versions	of	the	data	at	the	same	time,	side-effects	will	cause	
inadvertent	communications	which	may	cause	race	
conditions

examples

Lisp's	lists

when	not	using	set-car!	or	set-cdr!

only	use	cons,	car,	cdr

persistent	search	trees

copy	every	node	on	the	path	until	the	root

creates	a	new	root

booksPurely	Functional	Data	Structures	(by	Chris	Okasak)

video	example

http://en.wikipedia.org/wiki/AVL_tree
http://4.bp.blogspot.com/-Jg5jSaGVGAg/TlgATzbJC7I/AAAAAAAAAEI/9vnXCHTRLN0/s1600/ll.gif
http://tldp.org/LDP/tlk/ds/ds.html
http://www.gigamonkeys.com/book/figures/list-or-tree.png
http://www.amazon.com/Purely-Functional-Structures-Chris-Okasaki/dp/0521663504
http://img.timeinc.net/time/photoessays/2008/trees/franklin_trees_01.jpg
http://en.wikipedia.org/wiki/AVL_tree
http://en.wikipedia.org/wiki/Red%E2%80%93black_tree
http://upload.wikimedia.org/wikipedia/commons/thumb/6/66/Red-black_tree_example.svg/500px-Red-black_tree_example.svg.png
http://infolab.stanford.edu/~ullman/dbsi/win98/gifs/B%2Btree.gif
http://upload.wikimedia.org/wikipedia/commons/a/a7/Halbach_array.png
http://en.wikipedia.org/wiki/MurmurHash
http://www.complexification.net/gallery/machines/treeGarden/treeGardenA0000.jpg
http://www.cs.auckland.ac.nz/~jmor159/PLDS210/fig/AVL_bal.gif
http://www.cs.auckland.ac.nz/~jmor159/PLDS210/fig/AVL_bal.gif
http://upload.wikimedia.org/wikipedia/commons/thumb/6/66/Red-black_tree_example.svg/500px-Red-black_tree_example.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/d/d0/Hash_table_5_0_1_1_1_1_1_LL.svg/450px-Hash_table_5_0_1_1_1_1_1_LL.svg.png

